Abstract
The visual systems of insects perform complex processing using remarkably compact neural circuits, yet these circuits are often studied using simplified stimuli which fail to reveal their behaviour in more complex visual environments. We address this issue by testing models of these circuits in real-world visual environments using a mobile robot. In this paper we focus on the lobula giant movement detector (LGMD) system of the locust which responds selectively to objects which approach the animal on a collision course and is thought to trigger escape behaviours. We show that a neural network model of the LGMD system shares the preference for approaching objects and detects obstacles over a range of speeds. Our results highlight aspects of the basic response properties of the biological system which have important implications for the behavioural role of the LGMD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.