Abstract

To accurately depict in-service behavior of multi-phase, fully bio-based composites, models must be able to capture material deterioration. In this work, a viscoelastic micromechanical creep model, validated by experimental work, was proposed for bio-based wood polymer composites subject to moisture and prolonged loading. To capture the highly weakened or “deteriorated” interface incurred from fiber swelling, characterizations of the interface, fiber, and matrix were used. Experimental mechanics findings and morphological data were used to inform composite deterioration and to select modeling parameters. The model was verified using extended experimental results, and also extended to drive design of more environmentally sustainable composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.