Abstract

A multi-scale methodology that includes microscale finite element simulations, physical experiments, and a macroscale phenomenological model was used to determine the appropriate first-order influence parameters relating to void/crack nucleation. The finite element analyses were used to examine the role of seven independent features (number of silicon particle sites, uniformity of particle sizes which were micron size, shape of particles, additional microporosity, temperature, prestrain history, and loading conditions) in debonding and fracture of hard silicon particles in a cast A356 aluminum alloy. Owing to the wide range of features that can affect void/crack nucleation, an optimal matrix of finite element calculations is generated using a statistical method of design of experiments (DOE). The DOE method was used to independently screen the parametric influences concerning void/crack nucleation by second phase fracture or interface debonding. The results clearly show that the initial temperature was the most dominant influence parameter with respect to the others for both fracture and debonding. Experiments were then performed at three temperatures to quantify the void/crack nucleation from notch tensile specimen fracture surfaces. The data verified the importance of the temperature dependence on void/crack nucleation and showed that as the temperature decreased, the void nucleation rate increased. The Horstemeyer–Gokhale void/crack nucleation model was modified to include the temperature dependence and material constants were determined based on the experimental data. This study exemplifies a methodology of bridging various size scale analyses by sorting out the pertinent cause–effect relations from the structure–property relations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.