Abstract
For many years significant attention has been devoted to the application of forecasting models, both causal and time series, to the demand for tourism. However, most studies use national data and only a few are destination specific. The present paper applies a logistic growth forecasting model to tourist demand for Las Vegas and the empirical results indicate a superiority of logistic growth model when compared to the benchmark seasonal autoregressive integrated moving average (SARIMA) and Naïve 1 models. Based on the accuracy criteria of mean absolute percentage error and root mean square percentage error, the present study demonstrates that forecasts of tourism demand obtained by logistic growth forecasting model are more accurate (and hence more useful to tourism managers and planners) than forecasts obtained through any of the two benchmark models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.