Abstract

Wind energy is an important renewable source that has been considerably developed recently. In order to obtain successful 24-h lead-time wind power forecasts for operational and commercial uses, a combination of physical and statistical models is desirable. In this paper, a hybrid methodology that employs a numerical weather prediction model (Weather Research and Forecasting) and a neural network (NN) algorithm is proposed and assessed. The methodology is applied to a wind farm in northwestern Mexico, a region with high wind potential where complex geography adds large uncertainty to wind energy forecasts. The energy forecasts are then evaluated against actual on-site power generation over one year and compared with two reference models: decision trees (DT) and support vector regression (SVR). The proposed method exhibits a better performance with respect to the reference methods, showing an hourly normalized mean absolute percentage error of 6.97%, which represents 6 and 13 percentage points less error in wind power forecasts than with DT and SVR methods, respectively. Under strong synoptic forcing, the NN wind power forecast is not very accurate, and novel approaches such as hierarchical algorithms should be employed instead. Overall, the proposed model is capable of producing high-quality wind power forecasts for most weather conditions prevailing in this region and demonstrates a good performance with respect to similar models for medium-term wind power forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.