Abstract

Strengthening regulations on carbon emissions from ships is important for ensuring that China can achieve its dual carbon aims of reaching peak carbon emissions before 2030 and achieving carbon neutrality before 2060. Currently, the primary means of monitoring ship exhaust emissions are the sniffing method and non-imaging optical remote sensing; however, these methods suffer from a low prediction efficiency and high cost. We developed a method for predicting the CO2 content of ship exhaust that uses a convolutional neural network and mid-infrared spectral images. First, a bench experiment was performed to synchronously obtain mid-wave infrared spectral images of the ship exhaust plume and true values for the CO2 concentration from the online monitoring of eight spectral channels. Then, the ResNet50 residual neural network, which is suitable for image prediction tasks, was selected to predict the CO2 content. The preprocessed mid-infrared spectral image of each channel and the corresponding true value for the CO2 content were input to the neural network, and convolution was applied to extract the radiation characteristics. The neural network then mapped the relationship between the true CO2 content and the radiation characteristics for each channel, which it used to predict the CO2 content in the ship exhaust. The results demonstrated that the predicted and true CO2 contents had a root mean square error of <0.2, mean absolute error of <0.15, and mean absolute percentage error of <3.5 for all eight channels. The developed model demonstrated a high prediction accuracy with one channel in particular demonstrating the best performance. This study demonstrates that the method used for predicting the CO2 content of ship exhaust based on convolutional neural networks and mid-infrared spectral images is feasible and has reference significance for the remote monitoring of ship exhaust emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.