Abstract

The structural and dynamic properties of 1-butyl-3-methylimidazolium bromide ([C4mim]Br)/water mixtures with different molar ratios have been investigated using classical molecular dynamics (MD) simulations, and the reliability of the results has been assessed by comparison with extended X-ray absorption fine structure experimental data. The analysis of the MD trajectories has highlighted the presence of a complex network of interactions among cations, anions, and water molecules, even if water molecules have been found to interact preferentially with the Br(-) anion. The existence of solvent-shared ion pairs has been detected in all of the investigated mixtures with one or more water molecules acting as a bridge between the cation and the anion, also when water is present in great excess ([C4mim]Br/water ratio of 1:200). The dynamic behavior of the systems has been characterized starting from the MD trajectories. Water molecules have been found to quicken the dynamics of the IL cations and anions, and acceleration involves all of the investigated motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.