Abstract
Bundle-sheath conductance (g(bs) ) affects CO(2) leakiness, and, therefore, the efficiency of the CO(2) -concentrating mechanism (CCM) in C(4) photosynthesis. Whether and how g(bs) varies with leaf age and nitrogen status is virtually unknown. We used a C(4) -photosynthesis model to estimate g(bs) , based on combined measurements of gas exchange and chlorophyll fluorescence on fully expanded leaves of three different ages of maize (Zea mays L.) plants grown under two contrasting nitrogen levels. Nitrogen was replenished weekly to maintain leaf nitrogen content (LNC) at a similar level across the three leaf ages. The estimated g(bs) values on leaf-area basis ranged from 1.4 to 10.3 mmol m(-2) s(-1) and were affected more by LNC than by leaf age, although g(bs) tended to decrease as leaves became older. When converted to resistance (r(bs) = 1/g(bs)), r(bs) decreased monotonically with LNC. The correlation was presumably associated with nitrogen effects on leaf anatomy such as on wall thickness of bundle-sheath cells. Despite higher g(bs), meaning less efficient CCM, the calculated loss due to photorespiration was still low for high-nitrogen leaves. Under the condition of ambient CO(2) and saturating irradiance, photorespiratory loss accounted for 3-5% of fixed carbon for the high-nitrogen, versus 1-2% for the low-nitrogen, leaves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.