Abstract

Phantom limb pain is neuropathic pain that occurs after the amputation of a limb and partial or complete deafferentation. The underlying cause has been attributed to maladaptive plasticity of the sensorimotor cortex, and evidence suggests that experimental induction of further reorganization should affect the pain. Here, we use a brain–computer interface (BCI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BCI training successfully induced some plastic alteration in the sensorimotor representation of the phantom hand movements. If a patient tried to control the robotic hand by associating the representation of phantom hand movement, it increased the pain while improving classification accuracy of the phantom hand movements. However, if the patient tried to control the robotic hand by associating the representation of the intact hand, it decreased the pain while decreasing the classification accuracy of the phantom hand movements. These results demonstrate that the BCI training controls the phantom limb pain depending on the induced sensorimotor plasticity. Moreover, these results strongly suggest that a reorganization of the sensorimotor cortex is the underlying cause of phantom limb pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call