Abstract
BackgroundMyogenesis is an ordered process whereby mononucleated muscle precursor cells (myoblasts) fuse into multinucleated myotubes that eventually differentiate into myofibres, involving substantial changes in gene expression and the organisation of structural components of the cells. To gain further insight into the orchestration of these structural changes we have overlaid the spatial organisation of the protein components of a muscle cell with their gene expression changes during differentiation using a new 3D visualisation tool: the Virtual Muscle 3D (VMus3D).ResultsSets of generic striated muscle costamere, Z-disk and filament proteins were constructed from the literature and protein-interaction databases. Expression profiles of the genes encoding these proteins were obtained from mouse C2C12 cells undergoing myogenesis in vitro, as well as a mouse tissue survey dataset. Visualisation of the expression data in VMus3D yielded novel observations with significant relationships between the spatial location and the temporal expression profiles of the structural protein products of these genes. A muscle specificity index was calculated based on muscle expression relative to the median expression in all tissues and, as expected, genes with the highest muscle specificity were also expressed most dynamically during differentiation. Interestingly, most genes encoding costamere as well as some Z-disk proteins appeared to be broadly expressed across most tissues and showed little change in expression during muscle differentiation, in line with the broader cellular role described for some of these proteins.ConclusionBy studying gene expression patterns from a structural perspective we have demonstrated that not all genes encoding proteins that are part of muscle specific structures are simply up-regulated during muscle cell differentiation. Indeed, a group of genes whose expression program appears to be minimally affected by the differentiation process, code for proteins participating in vital skeletal muscle structures. Expression alone is a poor metric of gene behaviour. Instead, the "connectivity model of muscle development" is proposed as a mechanism for muscle development: whereby the closer to the myofibril core of muscle cells, the greater the gene expression changes during muscle differentiation and the greater the muscle specificity.
Highlights
Myogenesis is an ordered process whereby mononucleated muscle precursor cells fuse into multinucleated myotubes that eventually differentiate into myofibres, involving substantial changes in gene expression and the organisation of structural components of the cells
Gene expression data for this set of genes was obtained from a mouse C2C12 in vitro muscle cell line before and after differentiation from the NCBI GEO (Gene Expression Omnibus) database [13]
Virtual Muscle 3D (VMus3D), a database-driven 3D muscle browser of the structural proteins and their arrangements of skeletal muscle (Figure 1), was developed to enable the visualisation of gene expression levels and differences in the relative spatial locations of the proteins encoded by their relevant transcripts
Summary
Myogenesis is an ordered process whereby mononucleated muscle precursor cells (myoblasts) fuse into multinucleated myotubes that eventually differentiate into myofibres, involving substantial changes in gene expression and the organisation of structural components of the cells. One of the major challenges in muscle research is to understand how a muscle precursor cell with a very different organisation develops the highly organised structure responsible for the sophisticated mechanics of muscle. Understanding this fundamental process is of high interest to medical science for treatment of muscle diseases and animal science for exploring body growth and meat quality determinants. Restricting analyses to muscle-specific or dynamically changing gene expression sets does not provide an integrated model for understanding the overall function of muscle structural proteins. This is especially true for understanding the transition of broadly expressed to structurally restricted proteins which needs to be underpinned by an understanding of their structure-function relationship
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.