Abstract

Selection of finishing beef cattle for slaughter and evaluation of performance is currently achieved through visual assessment and/or by weighing through a crush. ThusConsequently, large numbers of cattle are not meeting target specification at the abattoir. Video imaging analysis (VIA) is increasingly used in abattoirs to grade carcasses with high accuracy. There is potential for three-dimensional (3D) imaging to be used on farm to predict carcass characteristics of live animals and to optimise slaughter selections. The objectives of this study were to predict liveweight (LW) and carcass characteristics of live animals using 3D imaging technology and machine learning algorithms (artificial neural networks). Three dimensional images and LW’s were passively collected from finishing steer and heifer beef cattle of a variety of breeds and sexes pre slaughter (either on farm or after entry to the abattoir lairage) using an automated camera system. Sixty potential predictor variables were automatically extracted from the live animal 3D images using bespoke algorithms; these variables included lengths, heights, widths, areas, volumes and ratios and were used to develop predictive models for liveweight and carcass characteristics. Cold carcass weights (CCW) for each animal were provided by the abattoir. Saleable meat yield (SMY) and EUROP fat and conformation grades were also determined for each individual by VIA of half of the carcass. From the 3D images, 60 potential predictor variables were automatically extracted using bespoke algorithms; these variables included lengths, heights, widths, areas, volumes and ratios. Performance of prediction models was assessed using R2 and RMSE parameters following regression of predicted and actual variables for LW (R2 = 0.7, RMSE = 42), CCW (R2 = 0.88, RMSE = 14) and SMY (R2 = 0.72, RMSE = 14). The models predicted EUROP fat and conformation grades with 54% and 55% accuracy (R2), respectively. This study demonstrated that 3D imaging coupled with machine learning analytics can be used to predict LW, SMY and traditional carcass characteristics of live animals. This system presents an opportunity to reduce a considerable inefficiency in beef production enterprises through autonomous monitoring of finishing cattle on the farm and marketing of animals at the optimal time.

Highlights

  • In 2017, 51% of prime beef carcasses in the UK did not meet target fat and conformation grades: 40% had poor conformation and 15% were too fat (AHDB, 2018a)

  • Live animal data was gathered from a range of sources: including both commercial and research farms and from an abattoir lairage

  • This study has shown that there is potential to use 3D imaging technology to automate the process of selecting cattle for slaughter at the correct specification, so improving the efficiency and profitability of beef enterprises through marketing of animals at the optimal time

Read more

Summary

Introduction

In 2017, 51% of prime beef carcasses in the UK did not meet target fat and conformation grades: 40% had poor conformation and 15% were too fat (AHDB, 2018a). The cost to UK producers of sending over-finished cattle to slaughter has been estimated at £8.8 million per year (AHDB, 2018b). For example Roehe et al (2013) estimated that for an increase in EUROP grade from R4L to R4H for an intensively fed steer of a medium sized breed, a loss of £11.37 would be made in feeding costs alone. Identifying the optimum slaughter point to meet market specifications for beef cattle has economic benefits (Roehe et al, 2013), and reduces the environmental impact of cattle production (de Vries and de Boer, 2010). To improve sustainability in the beef production sector it is important for farmers to be able to predict carcass value in the live animal

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call