Abstract

We determined the accuracy of 24-hour urinalysis in predicting stone type and identify the associations between 24-hour urine elements with stone type. We performed a retrospective review of 503 stone formers with stone composition analysis and 24-hour urinalysis available. Analysis of 24-hour urine elements across stone types was performed using Fisher's exact test and ANOVA. Multinomial logistic regression was used to predict stone type based on 24-hour urinalysis. A total of 280 (56%) patients had predominantly calcium oxalate, 103(20%) had uric acid, 93 (19%) had calcium phosphate, 16 (3%) had mixed and 11(2%) had other stone types. There were several significant patient characteristics and 24-hour urinalysis differences across stone type groups. The statistical model predicted 371 (74%) calcium oxalate, 78 (16%) uric acid, 52 (10%) calcium phosphate, zero mixed and 2 (less than 1%) other stone types. The model correctly predicted calcium oxalate stones in 85%, uric acid in 51%, calcium phosphate in 31%, mixed in 0% and other stone types in 18% of the cases. Of the predicted stone types, correct predictions were 61%, 69%, 56% and 71% for calcium oxalate, uric acid, calcium phosphate and other stones types, respectively. The overall accuracy was 64%. Plots were used to explore the associations between each 24-hour urine element with each predicted stone type adjusted for all the others urinary elements. A 24-hour urinalysis alone does not accurately predict stone type. However, it may be used in conjunction with other variables to predict stone composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.