Abstract

Dual Bounds of Sparse Principal Component Analysis Sparse principal component analysis (PCA) is a widely used dimensionality reduction tool in machine learning and statistics. Compared with PCA, sparse PCA enhances the interpretability by incorporating a sparsity constraint. However, unlike PCA, conventional heuristics for sparse PCA cannot guarantee the qualities of obtained primal feasible solutions via associated dual bounds in a tractable fashion without underlying statistical assumptions. In “Using L1-Relaxation and Integer Programming to Obtain Dual Bounds for Sparse PCA,” Santanu S. Dey, Rahul Mazumder, and Guanyi Wang present a convex integer programming (IP) framework of sparse PCA to derive dual bounds. They show the worst-case results on the quality of the dual bounds provided by the convex IP. Moreover, the authors empirically illustrate that the proposed convex IP framework outperforms existing sparse PCA methods of finding dual bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.