Abstract

The overlap in the mass symmetric region of the reaction products from fusion-fission and quasifission complicates the assignment of symmetric events to complete fusion on the basis of the mass distribution alone. Additional observables, besides mass distribution, should be used. The approach proposed here relies on the fact that fusion-fission and quasifission are characterized by different timescales. Within this framework, we performed a detailed study to find out how timescales can be probed via angular momentum transfer as measured via γ-ray multiplicities. The proof of principle was carried out by measuring the γ rays in coincidence with fusion-fission and quasielastic binary fragments in the reaction S32 + Au197 at beam energy near the Coulomb barrier. The experiment was performed at the Accelerateur Lineaire Tandem a Orsay (ALTO) facility at the Institut De Physique Nucleaire (IPN) in Orsay (France) using a detection setup consisting of ORGAM (ORsay GAMma) and PARIS (Photon Array Radioactive Ion Stable beams) γ-detectors arrays coupled with the CORSET (CORrelation SETup) time-of-flight spectrometer. Results of the sensitivity of this method to distinguish reaction channels with different dynamics are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.