Abstract

Buthus martensi Karsch (BmK) AS is a scorpion polypeptide toxin, said to target the voltage-gated sodium channels (VGSCs). However, the mechanism of action of BmK AS on the VGSCs has yet to be defined. We examined the electrophysiological effects of BmK AS in a wide dose range on the rat brain-type VGSC alpha-subunit, rNav1.2a, heterologously expressed in Xenopus oocytes and on the VGSCs endogenously expressed in the dorsal root ganglion neuroblastoma ND7-23 cell line. In the oocytes, BmK AS depolarized the voltage dependence of activation and inactivation of rNav1.2a at 0.1 and 500 nM whereas these parameters were hyperpolarized at 1 nM. In ND7-23 cells, BmK AS hyperpolarized the voltage dependence of activation and inactivation at 0.1, 1 and 100 nM but not 10 nM. BmK AS also hyperpolarized the voltage dependence of recovery from inactivation at 0.1 and 100 nM and slowed the recovery kinetics at all concentrations, but the effects of 1 and 10 nM were relatively smaller than those at 0.1 and 100 nM. Moreover, the inactivation of VGSCs was potentiated by 10 nM BmK AS in both systems, whereas it was inhibited by 0.1 or 100 nM BmK AS in the oocytes or ND7-23 cells respectively. BmK AS modulated the VGSCs in a unique U-shaped dose-dependent manner, which could be due to the opposing effects of binding to two distinct receptor sites on the VGSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.