Abstract

Whether androgens, distinct from estrogen, maintain bone health during male aging has implications for understanding osteoporosis. We assessed associations of different sex hormones with incidence of any bone fracture or hip fracture in older men. Analysis of 3307 community-dwelling men aged 76.8 ± 3.5 years, median follow-up period of 10.6 years. Plasma testosterone (T), dihydrotestosterone (DHT), and estradiol (E2) assayed by mass spectrometry, sex hormone-binding globulin (SHBG), and luteinizing hormone (LH) using immunoassay. Incident fractures determined via data linkage. We analyzed probability of fracture and performed Cox regression adjusted for age, medical comorbidities, and frailty. Incident fractures occurred in 330 men, including 144 hip fractures. Probability plots suggested nonlinear relationships between hormones and risk of any fracture and hip fracture, with higher risk at lower and higher plasma T, lower E2, higher SHBG, and higher LH. In fully adjusted models, there was a U-shaped association of plasma T with incidence of any fracture (Quartile 2 [Q2] versus Q1: fully adjusted hazard ratio [HR] = 0.69, 95% confidence interval [CI] 0.51-0.94, P = .020; Q3: HR 0.59, 95% CI 0.42-0.83, P = .002) and hip fracture (Q2 versus Q1: HR 0.60, 95% CI 0.37-0.93, P = .043; Q3: HR 0.52, 95% CI 0.31-0.88, P = .015). DHT, E2, and LH were not associated with fracture. Higher SHBG was associated with hip fracture (Q4 versus Q1: HR 1.76, 95% CI 1.05-2.96, P = .033). Midrange plasma T was associated with lower incidence of any fracture and hip fracture, and higher SHBG with increased risk of hip fracture. Circulating androgen rather than estrogen represents a biomarker for hormone effects on bone driving fracture risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call