Abstract

Stochastic models for estimating residential water demand use high-resolution field data consuming large costs and significant time. An attempt for the accurate estimation of water demand may result in its complex analytical model due to numerous factors affecting the water use event. Moreover, as the water supply system is always subjected to variations in demand, the accuracy of water demand estimation in its design can be side-lined. The water demand in residential buildings is mainly governed by the users’ characteristics and their daily schedule. In this view, the use of Fuzzy Logic can be advantageous to model the uncertainty in water demands. The presented study attempts to provide a methodology to estimate urban indoor residential water demand with the help of user-based end-use models in the absence of field data and generate various possible water demand patterns of fixtures. Usergroups were created for assuming spatial variations in water demand. Fuzzy Logic was used to develop the end-use models using data on urban users’ characteristics, their diurnal activities, and water use habits to estimate the demand characteristics of fixtures. The model may also facilitate the computation of pipe sizing in building water supply systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call