Abstract
Subjective assessments (SAs) are assigned by users against items, such as 'elegant' and 'gorgeous', and are common in reviews/tags in many online-sites. However, previous studies fail to effectively use SAs for improving recommendations because few users rate the same items with the same SAs, which triggers the sparsity problem in collaborative filtering. We propose a novel algorithm that links a taxonomy of items to a taxonomy of SAs to assess user interests in detail. That is, it merges the SAs assigned by users against an item into subjective classes (SCs) and reflects the SAs/SCs assigned to an item to its classes. Thus, it can measure the similarity of users from not only SAs/SCs assigned to items but also their classes, which overcomes the sparsity problem. Our evaluation, which uses data from a popular restaurant review site, shows that our method generates more accurate recommendations than previous methods. Furthermore, we find that SAs frequently assigned on a few item classes are more useful than those widely assigned against many item classes in terms of recommendation accuracy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.