Abstract
As the volume and variety of information sources continues to grow, there is increasing difficulty with respect to obtaining information that accurately matches user information needs. A number of factors affect information retrieval effectiveness (the accuracy of matching user information needs against the retrieved information). First, users often do not present search queries in the form that optimally represents their information need. Second, the measure of a document's relevance is often highly subjective between different users. Third, information sources might contain heterogeneous documents, in multiple formats and the representation of documents is not unified. This paper discusses an approach for improvement of information retrieval effectiveness from document databases. It is proposed that retrieval effectiveness can be improved by applying computational intelligence techniques for modelling information needs, through interactive reinforcement learning. The method combines qualitative (subjective) user relevance feedback with quantitative (algorithmic) measures of the relevance of retrieved documents. An information retrieval is developed whose retrieval effectiveness is evaluated using traditional precision and recall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.