Abstract

We consider a network comprised of multiple primary users (PUs) and multiple secondary users (SUs), where the SUs seek access to a set of orthogonal channels each occupied by one PU. Only one SU is allowed to coexist with a given PU. We propose a distributed matching algorithm to pair the network users, where a Stackelberg game model is assumed for the interaction between the paired PU and SU. The selected secondary is given access in exchange for monetary compensation to the primary. The PU optimizes the interference price it charges to a given SU and the power allocation to maintain communication. The SU optimizes its power demand so as to maximize its utility. Our algorithm provides a unique stable matching. Numerical results indicate the advantage of the proposed algorithm over other reference schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.