Abstract

There is a need to estimate dynamically integrated supply-and-demand components of irrigated agriculture as part of the simulation of surface-water and ground-water flow. To meet this need, a computer program called the Farm Process (FMP1) was developed for the U.S. Geological Survey three-dimensional finite-difference modular ground-water flow model, MODFLOW- 2000 (MF2K). The FMP1 allows MF2K users to simulate conjunctive use of surface- and ground water for irrigated agriculture for historical and future simulations, water-rights issues and operational decisions, nondrought and drought scenarios. By dynamically integrating farm delivery requirement, surface- and ground-water delivery, as well as irrigation-return flow, the FMP1 allows for the estimation of supplemental well pumpage. While farm delivery requirement and irrigation return flow are simulated by the FMP1, the surface-water delivery to the farm can be simulated optionally by coupling the FMP1 with the Streamflow Routing Package (SFR1) and the farm well pumping can be simulated optionally by coupling the FMP1 to the Multi-Node Well (MNW) Package. In addition, semi-routed deliveries can be specified that are associated with points of diversion in the SFR1 stream network. Nonrouted surface-water deliveries can be specified independently of any stream network. The FMP1 maintains a dual mass balance of a farm budget and as part of the ground-water budget. Irrigation demand, supply, and return flow are in part subject to head-dependent sources and sinks such as evapotranspiration from ground water and leakage between the conveyance system and the aquifer. Farm well discharge and farm net recharge are source/sink terms in the FMP1, which depend on transpiration uptake from ground water and other head dependent consumptive use components. For heads rising above the bottom of the root zone, the actual transpiration is taken to vary proportionally with the depth of the active root zone, which can be restricted by anoxia or wilting. Depths corresponding to anoxia- or wilting-related pressure heads within the root zone are found using analytical solutions of a vertical pseudo steady-state pressure- head distribution over the depth of the total root zone (Consumptive Use Concept 1). Alternatively, a simpler, conceptual model is available, which defines how consumptive use (CU) components vary with changing head (CU Concept 2). Subtracting the ground water and precipitation transpiration components from the total transpiration yields a transpiratory irrigation requirement for each cell. The total farm delivery requirement (TFDR) then is determined as cumulative transpiratory and evaporative irrigation requirements of all farm cells and increased sufficiently to compensate for inefficient use from irrigation with respect to plant consumption. The TFDR subsequently is satisfied with surface- and ground-water delivery, respectively constrained by allotments, water rights, or maximum capacities. Five economic and noneconomic drought response policies can be applied optionally, if the potential supply of surface water and ground water is insufficient to meet the crop demand: acreage-optimization with or without a water conservation pool, deficit irrigation with or without water-stacking, and zero policy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.