Abstract
Attribute-based encryption (ABE) can guarantee confidentiality and achieve fine-grained data access control in a cloud storage system. Due to the fact that every attribute in ABE may be shared by multiple users and each user holds multiple attributes, any single-attribute revocation for some user may affect the other users with the same attribute in the system. Therefore, how to revoke attribute efficiently is an important and challenging problem in ABE schemes. In order to solve above problems, we first give a concrete attack to the existing ABE scheme with attribute revocation. Then, we formalize the definition and security model, which model collusion attack executed by the existing users cooperating with the revoked users. Finally, we present a user collusion avoidance ciphertext-policy ABE scheme with efficient attribute revocation for the cloud storage system. The problem of attribute revocation is solved efficiently by exploiting the concept of an attribute group. When an attribute is revoked from a user, the group manager updates other users’ secret keys. Furthermore, we prove that the proposed scheme is secure against collusion attack launched by the existing users and the revoked users. The security of the proposed scheme is reduced to the computational Diffie–Hellman assumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.