Abstract
Remote desktop connection (RDC) services offer clients access to remote content and services, commonly used to access their working environment. With the advent of cloud-based services, an example use case is that of delivering virtual PCs to users in WAN environments. In this paper, we aim to analyze common user behavior when accessing RDC services. We first identify different behavioral categories, and conduct traffic analysis to determine a feature set to be used for classification purposes. We then propose a machine learning approach to be used for classifying behavior, and use this approach to classify a large number of real-world RDCs. Obtained results may be applied in the context of network resource planning, as well as in making Quality of Experience-driven resource allocation decisions.Keywordsuser behaviourremote desktop connectiontraffic classificationmachine learning
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.