Abstract

User authentication via keystroke dynamics remains a challenging problem due to the fact that keystroke dynamics pattern cannot be maintained stable over time. This paper describes a novel keystroke dynamics-based user authentication approach. The proposed approach consists of two stages, a training stage and an authentication stage. In the training stage, a set of orthogonal bases and a common feature vector are periodically generated from keystroke features of a legitimate user@?s several recent successful authentications. In the authentication stage, the current keystroke feature vector is projected onto the set of orthogonal bases, and the distortion of the feature vector between its projection is obtained. User authentication is implemented by comparing the slope correlation degree of the distortion between the common feature vector with a threshold determined periodically using the recent impostor patterns. Theoretical and experimental results show that the proposed method presents high tolerance to instability of user keystroke patterns and yields better performance in terms of false acceptance rate (FAR) and false rejection rate (FRR) compared with some recent methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.