Abstract
It is the premise of accessing and controlling cloud environment to establish the mutual trust relationship between users and clouds. How to identify the credible degree of the user identity and behavior becomes the core problem? This paper proposes a user abnormal behavior analysis method based on neural network clustering to resolve the problems of over-fitting and flooding the feature information, which exists in the process of traditional clustering analysis and calculating similarity. Firstly, singular value decomposition (SVD) is applied to reduce dimension and de-noise for massive data, where map-reduce parallel processing is used to accelerate the computation speed, and neural network model is used for softening points. Secondly, information entropy is added to hidden layer of neural network model to calculate the weight of each attribute. Finally, weight factor is used to calculate the similarity to make the cluster more accuracy. For the problem of analyzing the mobile cloud user behaviors, the experimental results show that the scheme has higher detection speed (DS) and clustering accuracy than traditional schemes. The proposed method is more suitable for the mobile cloud environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of China Universities of Posts and Telecommunications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.