Abstract

Hypertrophic cardiomyopathy (HC) is the most common cardiovascular inherited disease, and it is associated with arrhythmic events, heart failure, and death. Strain analysis by tissue tracking (TT) techniques on cardiac magnetic resonance (CMR) is a novel noninvasive diagnostic tool. However, the usefulness of CMR-TT to identify patients with HC at risk of adverse outcomes remains unknown. CMR strain parameters by CMR-TT were prospectively measured in a cohort of 136 consecutive patients with HC. Clinical (death or readmission for heart failure) and arrhythmic (any ventricular tachycardia) events during follow-up were prospectively recorded. Global radial systolic strain rate and global radial diastolic strain rate showed the best area under the receiver operating characteristic curve (ROC curve) to predict adverse clinical events. On Cox multivariate regression models, a global radial systolic strain rate value <1.4/s and a global radial diastolic strain rate value ≥ -1.38/s were independently associated with clinical events at follow-up (adjusted hazard ratio 6.57, 95% confidence interval [CI] 2.01 to 21.49, p=0.002; adjusted hazard ratio 5.96, 95% CI 1.79 to 19.89, p=0.004, respectively). Regarding arrhythmic events, global radial peak strain <27% showed the best area under the ROC curve and remained independently associated with ventricular tachycardia after adjustment for confounders (odds ratio 7.33, 95% CI 1.07 to 50.41, p=0.043). CMR strain parameters by TT predict clinical and arrhythmic events in patients with HC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.