Abstract

Background and objectiveIn-laboratory overnight polysomnography (PSG) is the gold standard method to diagnose the Sleep Apnoea-Hypopnoea Syndrome (SAHS). PSG is a complex, expensive, labour-intensive and time-consuming test. Consequently, simplified diagnostic methods are desirable. We propose the analysis of the airflow (AF) signal by means of recurrence plots (RP) features. The main goal of our study was to evaluate the utility of the information from RPs of the AF signals to detect paediatric SAHS at different levels of severity. In addition, we also evaluated the complementarity with the 3% oxygen desaturation index (ODI3). Methods946 AF and blood oxygen saturation (SpO2) recordings from children ages 0–13 years were used. The population under study was randomly split into training (60%) and test (40%) sets. RP was computed and 9 RP features were extracted from each AF recording. ODI3 was also calculated from each SpO2 recording. A feature selection stage was conducted in the training group by means of the fast correlation-based filter (FCBF) methodology to obtain a relevant and non-redundant optimum feature subset. A multi-layer perceptron neural network with Bayesian approach (BY-MLP), trained with these optimum features, was used to estimate the apnoea–hypopnoea index (AHI). Results8 of the RP features showed statistically significant differences (p-value <0.01) among the SAHS severity groups. FCBF selected the maximum length of the diagonal lines from RP, as well as the ODI3. Using these optimum features, the BY-MLP model achieved 83.2%, 78.5%, and 91.0% accuracy in the test group for the AHI thresholds 1, 5, and 10 events/h, respectively. Moreover, this model reached a negative likelihood ratio of 0.1 for 1 event/h and a positive likelihood ratio of 13.7 for 10 events/h. ConclusionsRP analysis enables extraction of useful SAHS-related information from overnight AF paediatric recordings. Moreover, it provides complementary information to the widely-used clinical variable ODI3. Thus, RP applied to AF signals can be used along with ODI3 to help in paediatric SAHS diagnosis, particularly to either confirm the absence of SAHS or the presence of severe SAHS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.