Abstract

BackgroundDeep-learning algorithms to annotate electrocardiograms (ECGs) and classify different types of cardiac arrhythmias with the use of a single-lead ECG input data set have been developed. It remains to be determined whether these algorithms can be generalized to 12-lead ECG-based rhythm classification. MethodsWe used a long short-term memory (LSTM) model to detect 12 heart rhythm classes with the use of 65,932 digital 12-lead ECG signals from 38,899 patients, using annotations obtained by consensus of 3 board-certified electrophysiologists as the criterion standard. ResultsThe accuracy of the LSTM model for the classification of each of the 12 heart rhythms was ≥ 0.982 (range 0.982-1.0), with an area under the receiver operating characteristic curve of ≥ 0.987 (range 0.987-1.0). The precision and recall ranged from 0.692 to 1 and from 0.625 to 1, respectively, with an F1 score of ≥ 0.777 (range 0.777-1.0). The accuracy of the model (0.90) was superior to the mean accuracies of internists (0.55), emergency physicians (0.73), and cardiologists (0.83). ConclusionsWe demonstrated the feasibility and effectiveness of the deep-learning LSTM model for interpreting 12 common heart rhythms according to 12-lead ECG signals. The findings may have clinical relevance for the early diagnosis of cardiac rhythm disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.