Abstract

The usefulness of human hepatocytes for assessing CYP2D6-related genetic polymorphisms was investigated. Propranolol and propafenone, which undergo phase I and II biotransformations, were used as model substrates alongside metoprolol, which is only metabolized via oxidative pathways. The contributions of CYP2D6 to the primary metabolisms of the substrates were estimated from the quinidine-mediated inhibition of their depletion rate constants in human hepatocytes and liver microsomes. The contributions in hepatocytes were 19.2% for propranolol at 0.05 µM and 36.7–76.3% for propafenone at 0.05–1.0 µM, and smaller than the contribution in microsomes, unlike the case for metoprolol. The differences between microsomes and hepatocytes were attributable to conjugate formation. The CYP2D6 contributions in hepatocytes reflected the in vivo data. The relevance of the concentration-dependent involvement of CYP2D6 in propafenone metabolism in hepatocytes to the in vivo polymorphic profile and the applicability of hepatocytes for evaluating these polymorphisms are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.