Abstract

BackgroundThe aim of this study was to determine if changes in latencies and amplitudes of the major waves of Auditory Event-Related Potentials (AERP), correlate with memory status of patients with mild cognitive impairment (MCI) and conversion to Alzheimer's disease (AD).91 patients with MCI (mean ± SD age = 66.6 ± 5.4, MMSE score = 27.7) and 30 age-matched healthy control (AMHC) subjects (mean ± SD age = 68.9 ± 9.9) were studied. 54 patients were re-examined after an average period of 14(± 5.2) months. During this time period 5 patients converted to AD. Between-group differences in latency and amplitude of the major AERP waves (N200, P300 and Slow Wave) were determined. Within each group, correlation coefficients (CC) between these characteristics of the different AERP waves were calculated. Finally, for patients, CCs were determined among each AERP wave and their age and MMSE scores. Confirmatory factor analysis (CFA) was used to examine the underlying structure of waveforms both in the control and the patient groups.ResultsLatencies of all major AERP components were prolonged in patients compared to controls. Patients presented with significantly higher N200 amplitudes, but no significant differences were observed in P300 amplitudes. Significant differences between follow-up and baseline measurements were found for P300 latency (p = 0.009), N200 amplitude (p < 0.001) and P300 amplitude (p = 0.05). MMSE scores of patients did not correlate with latency or amplitude of the AERP components. Moreover, the establishment of a N200 latency cut-off value of 287 ms resulted in a sensitivity of 100% and a specificity of 91% in the prediction of MCI patients that converted to AD.ConclusionAlthough we were not able to establish significant correlations between latencies and amplitudes of N200, P300 and SW and the patients' performance in MMSE, which is a psychometric test for classifying patients suffering from MCI, our results point out that the disorganization of the AERP waveform in MCI patients is a potential basis upon which a neurophysiologic methodology for identifying and "staging" MCI can be sought. We also found that delayed N200 latency not only identifies memory changes better than the MMSE, but also may be a potential predictor of the MCI patients who convert to AD.

Highlights

  • The aim of this study was to determine if changes in latencies and amplitudes of the major waves of Auditory Event-Related Potentials (AERP), correlate with memory status of patients with mild cognitive impairment (MCI) and conversion to Alzheimer's disease (AD).91 patients with MCI and 30 age-matched healthy control (AMHC) subjects were studied. 54 patients were re-examined after an average period of 14(± 5.2) months

  • Conclusion: we were not able to establish significant correlations between latencies and amplitudes of N200, P300 and Slow wave (SW) and the patients' performance in Mini Mental State Examination (MMSE), which is a psychometric test for classifying patients suffering from MCI, our results point out that the disorganization of the AERP waveform in MCI patients is a potential basis upon which a neurophysiologic methodology for identifying and "staging" MCI can be sought

  • We found that delayed N200 latency identifies memory changes better than the MMSE, and may be a potential predictor of the MCI patients who convert to AD

Read more

Summary

Introduction

The aim of this study was to determine if changes in latencies and amplitudes of the major waves of Auditory Event-Related Potentials (AERP), correlate with memory status of patients with mild cognitive impairment (MCI) and conversion to Alzheimer's disease (AD). Betweengroup differences in latency and amplitude of the major AERP waves (N200, P300 and Slow Wave) were determined. Of the major waves observed in the ERPs (N200, P300 and Slow Wave), P300 component corresponds to mental processes such as recognition, categorization of stimuli, expectancy or short-term memory while there are many regions in the brain, especially in the temporal lobe, the parietal lobe and the hippocampus which are thought to be responsible for its generation [1]. N200 wave may indicate an early cognitive elaboration concerning subject's attention orientation [11]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call