Abstract
Modelling the biokinetics of radionuclide excretion or retention is important in nuclear medicine and following accidental/malicious radioactivity releases. Sums of discrete exponential decay rates are often used, but we hypothesized that continuous probability distributions (CPD) of decay rates can describe the data more parsimoniously and robustly. We tested this hypothesis on diverse human and animal data sets involving various radionuclides (including plutonium, strontium, caesium) measured in the laboratory and in regions contaminated by the Fukushima and Chernobyl nuclear accidents. We used four models on each data set: mono-exponential (ME) with one discrete decay rate, bi-exponential (BE) with two rates, gamma-exponential (GE) with a Gamma distribution of stretched-exponential rates, and power-decay (PD) with a Gamma distribution of power-decay rates. Information-theoretic model selection suggested that radionuclide biokinetics, e.g. for plutonium in humans, are often better described by CPD models like GE and PD, than by discrete rates (ME and BE). Extrapolation of models fitted to data at short times to longer times was frequently more robust for CPD formalisms. We suggest that using a set of several CPD and discrete-rate models, and comparing them by information-theoretic methods, is a promising strategy to enhance the analysis of radionuclide excretion and retention kinetics.
Highlights
Our results suggest that radionuclide biokinetics in living organisms are often sufficiently complex to be reasonably described by a continuous distribution of decay rates, than by the commonly used assumption of one or two discrete rates
Such predictions are important in many situations, e.g. for estimating the cumulative radiation dose absorbed by a person exposed to radionuclides in a medical setting, or for estimating how long after a nuclear accident will game animals in the area retain radioactivity concentrations too high for human consumption
Summary
The main goal of this study was to conduct a proof of principle investigation of whether or not continuous probability distribution models like GE and PD could be reasonable for application in the fields of radionuclide biokinetics and radioecology, compared with models with discrete rates like ME and BE. Our goal was to apply the proposed set of models (ME, BE, GE and PD) to a diverse set of real data examples on radionuclide biokinetics from both humans and animals to assess a realistic range of model performance patterns, e.g. dominance of discrete rate models, dominance of CPD models, or no clearly best-supported model(s)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.