Abstract

FUS is a noninvasive treatment method, as complete coagulation necrosis is achieved without the insertion of any instruments. However, FUS monitor has the poor visualization because of the presence of the multi-reflections, rib shadows and the emergence of the hyperecho after the FUS treatment. 3D Slicer imaging is a diagnostic imaging support system that can provide the same cross-sectional MPR images on the same monitor screen using DICOM volume data from MRI which are not influenced by those artifacts. The purpose of this study was to utilize an interventional navigation system designed for FUS assisted by 3D Slicer was proposed, and a phantom study was carried out to assess the proposed system.

Highlights

  • Background/introduction FUS is a noninvasive treatment method, as complete coagulation necrosis is achieved without the insertion of any instruments

  • FUS monitor has the poor visualization because of the presence of the multi-reflections, rib shadows and the emergence of the hyperecho after the FUS treatment. 3D Slicer imaging is a diagnostic imaging support system that can provide the same cross-sectional MPR images on the same monitor screen using DICOM volume data from MRI which are not influenced by those artifacts

  • The purpose of this study was to utilize an interventional navigation system designed for FUS assisted by 3D Slicer was proposed, and a phantom study was carried out to assess the proposed system

Read more

Summary

Introduction

Background/introduction FUS is a noninvasive treatment method, as complete coagulation necrosis is achieved without the insertion of any instruments. FUS monitor has the poor visualization because of the presence of the multi-reflections, rib shadows and the emergence of the hyperecho after the FUS treatment. 3D Slicer imaging is a diagnostic imaging support system that can provide the same cross-sectional MPR images on the same monitor screen using DICOM volume data from MRI which are not influenced by those artifacts. The purpose of this study was to utilize an interventional navigation system designed for FUS assisted by 3D Slicer was proposed, and a phantom study was carried out to assess the proposed system

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.