Abstract

AbstractPlastic deformation of metals will broaden the x-ray diffraction line. The diffraction line around its peak can he approximated by a Gaussian function. The broadness of the diffraction line can be evaluated by the standard deviation, called Gaussian curve parameter (GCP), of a Gaussian function approximating the diffraction peak. Plastic strains applied to mild steels by simple and combined tension, compression, and tortion were correlated with GCP. Two kinds of GCP's were determined; the one, GCP α', was determined from the diffraction line corrected for the background counts, and the other, GCP α, was from the line uncorrected for the background, The GCP α' can be obtained from the GCP α asα' = 0.936α + 0.011This equation shows that the background subtraction can be omitted in determining GCP. The equivalent plastic strain ɛeq can be evaluated from the GCP a asɛeq - 0.000108 x 103.97αThis x-ray method allows rapid measurement of complex plastic strain without touching specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.