Abstract

Flow acceleration with Lagrangian description is crucial to understanding particle movements in turbulent jet flows or dissipation statistics in isotropic turbulence. Laser Doppler anemometry is regarded as a suitable experimental tool for measuring flow acceleration, because scattering particles generate trajectories in the measurement volume, which process gives rise to flow acceleration at a fixed measuring point with the Lagrangian description. The most useful algorithm for processing Doppler signals is either the quadrature demodulation technique (QDT) or the iterative parametric method (alternatively, the minimization of least squares, LSM) as in the literature. In the present study, another algorithm using the Wigner-Ville transforms (W-V) is introduced to give more accurate estimation of flow acceleration than the QDT or the LSM. Toward this end, five signal-processing algorithms, including the QDT, the LSM, the MC (maximization of correlation), and the W-V, were compared with each other in experiments with an impinging air jet flow with a cylindrical rod and a round free-air jet flow. Mean flow acceleration distribution in the streamwise direction was mainly investigated. Processing speeds for the above-mentioned signal-processing algorithms were checked to find the best algorithm, which has best performance with short processing time. The QDT was found to be an accurate algorithm with short processing time; however, the QDT was found to have limited applications to flows with large acceleration and high SNR. The MC was also found to be a good algorithm with moderate processing speed, which can be useful in flows with low SNR because the MC is an iterative parametric method. The W-V gave the most accurate values for flow acceleration; however, the processing time for this method was the slowest among the signal-processing algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.