Abstract

Whole genome shotgun sequencing (WGS) has been increasingly recognized as the most comprehensive and robust approach for metagenomics research. When compared with 16S-based metagenomics, it offers the advantage of identification of species level taxonomy and the estimation of metabolic pathway activities from human and environmental samples. Several large-scale metagenomic projects have been recently conducted or are currently underway utilizing WGS. With the generation of vast amounts of data, the bioinformatics and computational analysis of WGS results become vital for the success of a metagenomics study. However, each step in the WGS data analysis, including metagenome assembly, gene prediction, taxonomy identification, function annotation, and pathway analysis, is complicated by the shear amount of data. Algorithms and tools have been developed specifically to handle WGS-generated metagenomics data with the hope of reducing the requirement on computational time and storage space. Here, we present an overview of the current state of metagenomics through WGS sequencing, challenges frequently encountered, and up-to-date solutions. Several applications that are uniquely applicable to microbiome studies in reproductive and perinatal medicine are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.