Abstract

There is emerging evidence of the utility of virus-like particles (VLPs) as a novel model for the study of receptor-ligand interactions in a native plasma membrane environment. VLPs consist of a viral core protein encapsulated by portions of the cell membrane with membrane proteins and receptors expressed in their native conformation. VLPs can be generated in mammalian cells by transfection with the retroviral core protein (gag). In this study, we used Chinese hamster ovary (CHO T10) cells stably overexpressing the insulin receptor (IR) to generate IR bearing VLPs. The diameter and size uniformity of VLPs were estimated by dynamic light scattering and morphological features examined by scanning electron microscopy. The presence of high affinity IR on VLPs was demonstrated by competitive binding assays (KD: 2.3 ± 0.4 nM, n = 3), which was similar to that on the parental CHO T10 cells (KD: 2.1 ± 0.4 nM, n = 3). We also report that increases or decreases in membrane cholesterol content by treatment with methyl-β-cyclodextrin (MBCD) or cholesterol pre-loaded methyl-β-cyclodextrin (cMBCD), respectively, substantially decreased insulin binding (> 30%) to both VLPs and cells, and we speculate this is due to a change in receptor disposition. We suggest that this novel finding of decreases in insulin binding in response to changes in membrane cholesterol content may largely account for the unexplained decreases in insulin signalling events previously reported elsewhere. Finally, we propose VLPs as a viable membrane model for the study of insulin-IR interactions in a native membrane environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call