Abstract

A measles virus vaccine for infants under 6 months of age would help control measles. DNA vaccines hold promise, but none has provided full protection from challenge. Codon-optimized plasmid DNAs encoding the measles virus hemagglutinin and fusion glycoproteins were formulated with the cationic lipid-based adjuvant Vaxfectin. In mice, antibody and gamma interferon (IFN-gamma) production were increased by two- to threefold. In macaques, juveniles vaccinated at 0 and 28 days with 500 microg of DNA intradermally or with 1 mg intramuscularly developed sustained neutralizing antibody and H- and F-specific IFN-gamma responses. Infant monkeys developed sustained neutralizing antibody and T cells secreting IFN-gamma and interleukin-4. Twelve to 15 months after vaccination, vaccinated monkeys were protected from an intratracheal challenge: viremia was undetectable by cocultivation and rashes did not appear, while two naïve monkeys developed viremia and rashes. The use of Vaxfectin-formulated DNA is a promising approach to the development of a measles vaccine for young infants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call