Abstract

Pulsed laser deposition and various catalysts are used to fabricate ZnO micro- and nanorods at temperatures close to the optimum temperature for each catalyst. A comparative analysis of the optical and structural properties of the rods shows that, as the temperature of growth on Al2O3(11–20) substrates decreases, the internal stresses in the rods decrease, which improves their structure and optical properties. This effect is not observed for GaN/Si substrates because of the high stresses induced by the difference in the lattice parameters. An increase in the synthesis temperature leads to an increase in the lattice strains and the concentration of point defects, the relaxation of selection rules, and the appearance of numerous phonon A1(LO) overtones. The lattice strains calculated from unit cell parameter a and the shift in the phonon A1(LO) frequency agree qualitatively. The study of the photoluminescence of the rods shows that a decrease in the synthesis temperature decreases the imperfection of the ZnO rods and improves their optical properties for UV applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.