Abstract
UV radiation is known to inhibit photosynthetically active radiation (PAR)-driven photosynthesis; however, moderate levels of UV-A have been shown to enhance photosynthesis and growth rates of some algae. Here, we have shown that UV-A alone could drive photosynthetic utilization of bicarbonate in the red alga Gracilaria lemaneiformis as evidenced in either O(2) evolution or carbon fixation as well as pH drift. Addition of UV-B inhibited the apparent photosynthetic efficiency, raised the photosynthetic compensation point and photosynthesis-saturating irradiance level, but did not significantly affect the maximal rate of photosynthetic O(2) evolution. The electron transport inhibitor, DCMU, inhibited the photosynthesis completely, reflecting that energy of UV-A was transferred in the same way as that of PAR. Inorganic carbon acquisition for photosynthesis under UV alone was inhibited by the inhibitors of carbonic anhydrase. The results provided the evidence that G. lemaneiformis can use UV-A efficiently to drive photosynthesis based on the utilization of bicarbonate, which could contribute significantly to the enhanced photosynthesis in the presence of UV-A observed under reduced levels of solar radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.