Abstract

This study was performed to investigate the ability of ultrasonographic technique to distinguish osteomalacia from normal bone with the same mineral content. Ten rats with experimentally induced osteomalacia (group A) and 12 control rats having similar body size and weight (group B) were studied. Histomorphometric analysis confirmed the presence of osteomalacia in two rats from group A and showed normally mineralized bone in two rats from group B. Whole body bone mineral density, measured by dual-energy x-ray absorptiometry, was similar in the two groups (86 +/- 6 mg/cm2 in group A and 89 +/- 4 mg/cm2 in group B). The velocity of the ultrasound beam in bone was measured by densitometer at the first caudal vertebra of each rat. The velocity was measured when the first peak of the waveform reached a predetermined minimum amplitude value (amplitude-dependent speed of sound) as well as at the lowest point of this curve before it reaches the predetermined minimum amplitude (first minimum speed of sound). Although the amplitude-dependent speed of sound was similar in the two groups (1381.9 +/- 11.8 m/s in group A and 1390.9 +/- 17.8 m/s in group B), the first minimum speed of sound was clearly different (1446.1 +/- 8.9 m/s in group A and 1503.3 +/- 10.9 m/s in group B; P < 0.001). This study shows that ultrasonography could be used to identify alterations in bone quality, such as osteomalacia, but further studies need to be carried out before this method can be introduced into clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call