Abstract

This paper presents the first attempt to investigate the potential of Tunisian palygorskite-rich clay (Pal-clay) on the effectiveness of a textile dye “Direct orange 34” (DO34) removal. Important parameters which affect adsorption, such as initial solution pH, contact time, adsorbent mass, initial dye concentration, and temperature, were investigated. The raw Pal-clay was characterized using X-ray diffractometer (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), cation exchange capacity (CEC), specific surface area (SSA) analysis, and point of zero charge (PZC) determination. The results showed that the Pal-clay has a high selectivity for DO34 and had maximum removal efficiency reaching up to about 91 %. The highest adsorption capacity was obtained at 25 °C and pH of 2. The dye uptake process fitted well to the pseudo-second-order kinetic expression and was best described by the Langmuir and Freundlich isotherms. Intra-particle diffusion studies showed that the adsorption mechanism was not exclusively controlled by the diffusion step and was more likely to be governed by external mass transfer. Thermodynamic parameters such as change in free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also calculated. The parameters revealed that the adsorption of dye by the raw clay is spontaneous and exothermic. The results indicate that the Pal-clay has a moderate adsorption capacity towards anionic dye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.