Abstract

Simultaneous speciation of lead, mercury, and selenium was carried out by capillary electrophoresis. The method used a polyaminocarboxylic acid, triethylenetetraminehexaacetic acid (TTHA), as an off-column complexing agent to form UV-absorbing complexes with the analytes for direct UV detection. TTHA was also added to the background electrolyte for the on-column complexations of the analytes, as well as for improving resolution and detection. To describe the migration behavior of the complexes, a theoretical model, considerating pH value and the concentrations of TTHA and SDS, was proposed. The parameters in the model were calculated on the basis of the experimental data, by nonlinear regression. The results were in good agreement with those from the literature. The model can be used for the prediction of migration behavior and for the optimization of the separation conditions. Field-amplified stacking injection was performed because the complexes were charged. Up to 1500-fold on-line enrichment and down to sub-nanogram-per-milliliter detection limits were obtained for the analytes under the optimal stacking conditions. Finally, the applicability of the method was evaluated on seawater samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.