Abstract

Transgenes, composed of elements of the 5' nontranscribed region of the liver fatty acid-binding protein (L-FABP) gene linked to various reporters, have previously been used to explore the cellular, regional, and temporal differentiation of the mouse intestinal epithelium. In this report, we have analyzed a pedigree of L-FABP/human growth hormone (hGH) transgenic mice that display a stable, heritable, mosaic pattern of reporter expression: wholly hGH-positive or hGH-negative populations of differentiating enterocytes arise from hGH-positive or hGH-negative crypts, respectively, and migrate as vertical coherent bands up the villus producing striped (polyclonal) villi. The ability of enteroendocrine cells within a given villus stripe to support hGH expression coincides with the enterocytic reporter phenotype, suggesting that these two terminally differentiated cells arise from a common multipotent stem cell. hGH-negative crypts are nonrandomly distributed around each villus and their frequency increases along the duodenal-to-ileal axis. Statistical analysis of the observed villus striping pattern suggests that transgene expression is not independently determined in individual crypts but rather in multicrypt "patches." The intact endogenous mouse L-FABP gene (Fabpl) exhibits a similar striped villus pattern of expression in a portion of the distal small intestine. These studies indicate that Fabpl and L-FABP/hGH transgenes represent sensitive markers for exploring the biological properties of gut stem cells and how positional information is encoded in this rapidly and continuously renewing epithelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call