Abstract

In modern poultry production, stress-induced immunosuppression leads to serious economic losses and harm to animals, but the molecular mechanisms governing the effects of stress on the chicken thymus have not been elucidated. In this study, we successfully constructed a stress model of 7-day-old Gushi chickens by adding exogenous corticosterone (CORT) to their diet and determined the microRNA (miRNA) expression profile of thymus tissues using RNA-seq technology. The results identified 51 differentially expressed miRNAs (DEMs), including 30 upregulated miRNAs and 21 downregulated miRNAs. A total of 164 target genes of the DEMs were predicted based on bioinformatic analysis methods, and Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of these target genes were performed. The results from the GO enrichment analysis of the target genes identified 349 significantly enriched terms, including terms associated with the stress response and immune function that are primarily involved in the negative regulation of phagocytosis, the response to stress and the cellular response to stimulus. The KEGG pathway analysis indicated that the enriched pathways related to immunity or stress included the MAPK signaling pathway, lysosomes, endocytosis, and the RIG-I-like receptor signaling pathway. Among these pathways, DEMs (such as gga-miR-2954, gga-miR-106-5p, and gga-miR-16-5p) and corresponding target genes (such as IL11Ra, SIKE1, and CX3CL1) might be strongly correlated with thymic immunity in chickens. The results of this study provide a reference for further research on the molecular regulatory mechanisms governing the effect of stress on the immune function of the chicken thymus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.