Abstract

Adjuvant treatment with radiation (radiation therapy or radiosurgery) is a mainstay of treatment for patients harboring glioblastomas multiforme (GBM). Hypoxic regions within the tumor make cells less sensitive to radiation therapy. Trans sodium crocetinate (TSC) has been shown to increase oxygen diffusion in the brain and elevate the partial brain oxygen level. The goal of this study was to evaluate the radiosensitizing effects of TSC on GBM tumors. A rat C6 glioma model was used, in which C6 glioma cells were stereotactically injected into the rat brain to create a tumor. Following creation of a right frontal tumor, animals were randomized into 1 of 4 groups: 1) TSC alone (animal treated with moderate-dose TSC only); 2) radiation (animals receiving 8 Gy of cranial radiation); 3) radiation and low-dose TSC (animals receiving 8 Gy of radiation and 50 microg/kg of TSC); or 4) radiation and moderate-dose TSC (animals receiving 8 Gy of radiation and 100 microg/kg of TSC). Animals were observed clinically for 60 days or until death. Magnetic resonance (MR) imaging was performed at 2-week intervals on each animal and quantitatively evaluated for tumor response. Immunohistochemical analysis was performed on all brain tumors. Survival differences were also evaluated using the Kaplan-Meier method. On MR imaging, a statistically significant reduction in tumor size was seen in the group receiving moderate-dose TSC and radiation treatment compared with the group receiving radiation treatment alone. The rate of tumor growth was significantly less for the combination of TSC and radiation treatment compared with either modality alone. Median survival times for the TSC-only and the radiation therapy-only groups were 15 and 30 days, respectively. The 60-day median survival times for the groups receiving a combination of either low- or moderate-dose TSC with radiation therapy were statistically improved compared with those for the other treatment groups. Use of TSC improves the extent of GBM tumor regression following radiation therapy and enhances survival. Radiosensitization of hypoxic tumors through increased oxygen diffusion may have clinical utility in patients with GBM tumors but must be explored in a clinical trial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.