Abstract

Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

Highlights

  • Rare earth-doped crystals are widely used in many applications that require sources of visible and near-infrared radiation

  • The emissions at 1,450 and 1,250 nm are a characteristic of Tm3+ in a low phonon energy host crystal

  • This paper discussed two applications of Tm3+ sensitization of rare earth-doped low phonon energy host crystals, in which the resulting reduction in multiphonon relaxation rates enables useful energy transfer processes to occur that are quenched in conventional oxide and fluoride crystals

Read more

Summary

Introduction

Rare earth-doped crystals are widely used in many applications that require sources of visible and near-infrared radiation. When doped into conventional commercially available crystals such as YAG or YLF, rare earth ions do not radiate efficiently at wavelengths much longer than 3 μm. The mid-infrared range (3 to 10 μm) is not directly accessible using host crystals that have tightly bound oxygen or fluorine ions. The reasons are the relatively high energies for lattice phonons in these crystals and the fact that the rates for non-radiative multi-phonon relaxation increase exponentially as the energies of the electronic transitions are reduced and fewer phonons are required to bridge the gap. The demand for mid-infrared sources and applications in gas detection, remote sensing, IR spectroscopy, and infrared countermeasures has motivated research on alternative methods for generating mid-infrared.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.