Abstract

Double-walled microspheres (DWMS), with drug localized to the particle core, present a promising route for control of drug release rates, for example, by varying the degradation rate or erosion mechanism of the polymer used to form the shell or the thickness of the shell. DWMS are often difficult to fabricate, however. Thermodynamic descriptions for polymer–polymer immiscibility, drug distribution between phases and polymer–solution spreading coefficient provide predictions of appropriate solvents and polymer concentrations for efficiently producing well-formed DWMS. As an example, thermodynamic parameters for a polyphosphoester/poly( d,l-lactide- co-glycolide) (PLG) DWMS system, encapsulating piroxicam, have been calculated and the predictions tested experimentally. Appropriate choices of solvents and initial polymer concentrations resulted in DWMS with the desired polyphosphoester shells and piroxicam located selectively in PLG cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.