Abstract

We have developed a novel four-element based gene tagging system in Arabidopsis to minimize the number of starter lines required to generate genome-wide insertions for saturation mutagenesis. In this system, the non-autonomous cassette, Ds(dSpm), comprises of both Ds and dSpm elements cloned one within the other along with appropriate selection markers to allow efficient monitoring of excision and re-integration of the transposons. Trans-activation of the outer borders (Ds) and selection against the negative selection marker (iaaH) linked to the cassette ensures unlinked spread of the Ds(dSpm) cassette from the initial site of integration of the T-DNA. This creates several launch pads within the genome from where the internal element (dSpm) can be subsequently mobilized to generate secondary insertions. In this study, starting from a single T-DNA integration we could spread the Ds(dSpm) cassette to 11 different locations over all the five chromosomes of Arabidopsis. The frequency of unlinked Ds transpositions in the F2 generation varied between 0.05 and 3.35%. Three of these lines were then deployed to trans-activate the internal dSpm element which led to the selection of 29 dSpm insertions. The study conclusively shows the feasibility of deploying Ds and the dSpm elements in a single construct for insertional mutagenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.