Abstract

Birefringence in fiber Bragg gratings can result from two distinct effects that combine with the intrinsic fiber birefringence: the birefringence induced by the UV photo-writing and the birefringence due to a transversal load. In both cases, it leads to polarization dependent loss and differential group delay inside gratings. This paper aims to provide a characterization, both theoretically and experimentally, of the polarization dependent loss and the differential group delay generated by uniform Bragg gratings written into single mode optical fibers. We demonstrate that the measured polarization properties can be accurately reconstructed by means of the coupled mode theory and the Jones formalism. We also demonstrate that the PDL and DGD evolutions contain information about birefringence and can thus be used for transverse force sensing purposes. Experimental results obtained on fiber Bragg gratings transversally loaded by an external force confirm the simulated evolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.