Abstract

The MLX 90614 sensor is an IR sensor used to measure temperature without contact. This sensor can measure the object's temperature and ambient temperature in the range of -40 oC – 125 oC. These sensors are widely used in areas such as room temperature measurement, machine temperature, ambient temperature, and body temperature. The MLX 90614 sensor is not yet fully usable directly to perform temperature measurements due to the program's simple defaults so that the measurement results are inaccurate. Therefore, optimization is needed to increase the precision value of the body's internal temperature estimation using this sensor. The method carried out in this study used 6 experimental sheep. Temperature checks are performed through a contact thermometer and compared to non-contact checks by MLX 90614 sensors. Results showed the average temperature of the contact thermometer was 39.28±0.09 oC while the MLX sensor yield was 35.78±1.38 oC. The average temperature difference was 3.5±1.48 oC. The results showed that the temperature difference correction factor needs to be included in the script code when running MLX 90614 sensor. The results of temperature checks by the sensor can be sent directly in real time to the ThingSpeak platform so that the results can be stored and accessed in different places easily. The use of MLX 90614 sensor combined with IoT concept using ThingSpeak can facilitate the process of non-contact body temperature check, and also make the data can be accessed dan stored easily.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.